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NONSTEADY PROPERTIES OF COUETTE FLOW OF A LIQUID UNDER THE CONDITIONS 

OF A PHASE TRANSITION 
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Liquid flow under the conditions of the concurrent interaction of dissipative heat re- 
lease and a phase transition was investigated in [I, 2]. In this case a quasi-steady approxi- 
mation with respect to velocity and temperature was used, making it possible to determine the 
regions of the characteristic flow regimes: a complete phase transition, a regime of steady 
flow with the phase interface at an intermediate position, and a regime of hydrodynamic ther- 
mal explosion (HTE) [3]. 

Such an approach, presuming a sufficiently great heat of the phase transition and that 
the initial temperature and velocity distributions belong to the region of attraction of 
steady-state profiles, has a limited applicability. A clarification of the region of its 
applicability -- the problem of nonsteady analysis -- is discussed in the present paper. 

I. Statement of the Problem 

We Consider the Couette flow of a viscous incompressible liquid lying between two co- 
axial infinite cylinders; the inner one (with a radius r0) rotates while the outer one (with 
a radius r I) is stationary. The outer cylinder is cooled below the temperature T, of the 
phase transition, as a result of which a layer of solid material of thickness A = r, -- r0 is 
formed, where r, is the coordinate of the phase interface. The Arrhenius temperature depen- 
dence of the viscosity ~ = q0 exp (E/RT) is adopted, where E is the activation energy of the 
viscous flow, R is the universal gas constant, q0 is a preexponential factor, and T is the 
temperature. 

The system of equations of heat conduction and motion and the rheological equation can 
bewritten in the form 

�9 r < r , :  c l P l  ~ t  = El \a--~- + r Or ] " 

1 0 
(~r2), ~ = ~ r ~ ;  (1 2) 

= Olr---T 0-7 

r > r . :  csps~ = lz k Or ~ + "-F-Tr ]" (1 .3)  
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Here ~ is the angular velocity of the liquid, t is time, r is the current radius, and ci, c2, 
P~, P2, ~, and X2 are the heat capacity, density, and Coefficient of thermal conductivity of 

the liquid and solid phases, respectively. 

It is assumed that at the initial time the liquid is at rest at a constant temperature 

Ti: 

t = 0 : ~ = 0 ,  F = ~ . .  
I 

At the surface of the outer cylinder (r = ri) we adopt the cooling law 

T > T , :  ~ 7 r = - - ~ ( T - - T 0 ) ,  
or 

T < T , :  z-Sfr=--ai(T--To), (1 .4 )  

To = T ~ + ( T  i - - T ~ ) e x p  (--mr), 

where ~i is the coefficient of thermal conductivity of the outer cylinder, T~ is the tempera- 
ture of the surrounding medium, To is the temperature of the outer cylinder, and w is the 
cooling rate. Such a cooling regime is easily accomplished in a nonisothermal rotary viscosi- 
meter. 

At the inner cylinder (r = r0) we assign heat exchange by Newton's law, 

~1 = OT~r = ~2(T --  T~), (1 .5 )  

where ~2 and T s a r e  the  h e a t - t r a n s f e r  c o e f f i c i e n t  and t e m p e r a t u r e  o f  the  i n n e r  c y l i n d e r .  

A v i s c o s i m e t r i c  e x p e r i m e n t  i s  u s u a l l y  c a r r i e d  ou t  e i t h e r  on a c o n s t a n t - v e l o c i t y  v i c o s i -  
m e t e r ,  when t he  r o t a t i o n a l  v e l o c i t y  of  the  i n n e r  c y l i n d e r  i s  m a i n t a i n e d ,  o r  on a c o n s t a n t -  
moment v i s c o s i m e t e r ,  when a c o n s t a n t  d e f o r m a t i o n  s t r e s s  i s  m a i n t a i n e d  on the  i n n e r  c y l i n d e r .  
T h e r e f o r e ,  t he  e q u a t i o n  o f  m o t i o n  ( 1 . 2 )  i s  a n a l y z e d  e i t h e r  f o r  a c o n s t a n t  v e l o c i t y ,  

r = r o : ~  = ~ o ,  (1.6) 
or for an assigned stress, 

r = r o : a = %. 

The conditions at the moving phase interface have the form 

% Or k Or ~=r,+0--QP1 Or, 
r = r , :  ~Q=O, T = T , ,  l~Fr r=~ , -o=  2Tr ~ - '  

where Q is the heat of the phase transition. 

We introduce the dimensionless variables 

(1 .7 )  

(1 .8)  

t a  1 0 -  E ( / ' - - :r , ) ;  ~ =  ~ ~,_-- ~-- ~ = - =  
ro' 

= ~/~0 for an assigned velocity, and ~ = ~n(T,)/a0 for an assigned stress. 

In the dimensionless variables we write Eqs. (i .I)-(1.3) with the boundary conditions 
(1.4)-(1.8) in the form 

O0 020 i O0 " 0co'2 t 0 ) 

0-v= ~ L  o exp 1 4 ~ o  - ~  ; (1 .1o)  

t aO 020 t co. 
g > ~ * :  ~ a~ ag ~ + ~ a~' ( 1 . 1 1 )  

= ~ , : 0 = 0 ,  co=O,  -~Jg=s,--o a ~ = g ~ + o  a~' ( 1 . 1 2 )  
o0 

= 1 : - ~  =mi~(O --0~); (1 .13 )  

~o=1 or exp t + ~  g~-~ = t ;  ( 1 . t 4 )  
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Here 
~2 

~= i7; 
a ---~ a_&. d 

a 1 

0 oO - -B i ,  [0 - -  O~ - -  (0 ~ - -  0o~) exp (--  w'Ol, >0, -aT= 
= d :  ~ o 0  _ - -  B i  I [0 - -  Ooo - -  (0 i - -  0oo) e x p  (--  '~'0]. '= < O, a~ -- 

RT,. = r - - ! ' ~ =  E "  
r 0 

(i.~5) 

E "Too E ( T ~ - - T , ) ;  0 i =  E 0= = ~ ( - -  T,); 0, = Rr---~, ~ (Ti - -  T,); 

r 2 o~lr  0 . (%21"0. 
w = i L w ;  B i  1 = -  B i 2 =  

A = OF and Pr---- till(T*) 

for an assigned velocity and 

for an assigned stress. 

are dimensionless parameters. 

2 ~ E ro~ 
RT~, ~I(T,)  

The parameter 5 has the form 

2. Steady States of the System 

Analytic solutions of the steady-state problem of liquid flow between two plane-parallel 
plates and pressurized flow in a pipe under the conditions of a phase transition were found 
in [I, 2]. The results of the solution of these problems are in qualitative agreement with 
the results of the solution of the steady-state problem of Couette flow between two coaxial 
cylinders, but the specific geometry of such flow introduces certain peculiarities. In par- 
ticular, the parameter d characterizing the curvature appears here. 

Let us consider states of the system when the inner cylinder is thermally insulated 
while heat exchange by Newton's law w § ~ is assigned at the outer cylinder. Performing a 
Frank--Kamenetskii transformation of the exponential (B0 << I, ~0 2 << I) [4], we obtain the 
steady-state system of equations in the form 

d20 l d 0  ( d o ) )  2 
~ < ~ , : - ~ + - ~ - ~ - ~  + 6 e x p ( - - O )  ~-~-~ =0; (2.1) 

+ [ ~  8d~-~ exp (--0)]  = 0; ( 2 .2 )  

d20 t dO (2.3) ~>~,: ~ + - g ~ = 0 ;  
d0 dO 

= ~,: 0 = 0, + = 0, ~ ~=r = ~ ' -~ ]~=~,+o;. ( 2 . 4 )  

dO ~ dm exp (--  0) ---- 1; ( 2 . 5 )  = 1 : - ~ = 0 ,  ~ o = t  or at 

dO _ Bil  ( 0 _  0~o). ( 2 . 6 )  ~=d:-~= 

After eliminating the velocity gradient with the help of (2.2), we reduce Eq. (2.1) to 
the well-known equation from the theory of a thermal explosion [4], after which we find the 
solution of the system (2.1)-(2.3) with the boundary conditions (2.4)-(2.6): 

< ~,: 0 = I n (bl~") - -  In {ch ~ [b2 -- V b,ba6/2 In ( W-~,/~)]}, ( 2 .7 )  

ai = ! "  V2-~1/6 {th (b2-- V blba6/2 In V ~ , )  th [b2-- Vb~a6/2  ln( V ~ / ~ ) ] I ;  
> ~,: 0 = Bil0~ln(~/~*) (2.8) 

�9 l / d  -}-  Billn(d/~, ) " 

The c o n s t a n t s  of  i n t e g r a t i o n  b l  and b2 and t he  c o o r d i n a t e  ~ ,  o f  t he  phase  f r o n t  a r e  d e -  
t e r m i n e d  f rom the  s y s t e m  of  e q u a t i o n s  

oh[b2 + Vb'lbaS/21n]/~-,] = gb-11~,; ( 2 .9 )  
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�9 2 , bibs6 ~ 2 [ | / d  ~- Billn 

th[b2-- 
The c o n s t a n t  o f  i n t e g r a t i o n  b~ ha s  t h e  m e a n i n g  o f  t h e  d i m e n s i o n l e s s  s t r e s s  a t  t h e  i n n e r  

cylinder. For an assigned stress b~ = I, while for an assigned velocity 

l )~ Bil0~o 
bs = 5 i /d '~  Bi lln(d/~,)" 

The system of equations (2.9)-(2.1]) was solved numerically. We considered the limiting 
case of Biz § co, i.e., a constant temperature Too was assigned at the outer cylinder. The in- 
fluence of the parameter Bi I on the steady states of the system during Couette flow was 
studied in [2]. 

It turned out (cf. [2]) that whereas for an assigned velocity, ~(~,) is a monotonically 
increasing function, for an assigned stress this function proves to be nonmonotonic in a cer- 
tain range of variation of the parameter s = --%eoo/2 (Fig. I, s = 0.05, d = 1.1). The bound- 
aries 6+(s) and ~_(s) of the nonmonotonic region, determining the critical conditions for an 
HTE and for a complete phase transition, are shown in Fig. 2 (the solid lines correspond to 
d = 1.1). At s = s, the curves 6+(s) and ~_(s) merge, while at s > s, the function 6(~,) be- 
comes monotonically increasing. These results are in qualitative agreement with the results 
for the case of a plane-parallel strip. One can also show their quantitative agreement if 
the gap between the cylinders is small, i.e., d -- I << I ; then the connection between the 
values of 6+ for coaxial cylinders and ~[_+] for a plane-parallel strip [2] has the form 

~• = 6~ d21(i  - -  d)  ~. ( 2 . 1 2 )  

A numerical investigation of Eqs. (2.9)-(2.11) showed that Eq. (2.12) yields an error of 
no more than 15% for d < 1.5. From (2.12) and the solution (2.9)-(2.11) it is seen that the 
critical values of 6 decrease sharply with an increase in the layer between the cylinders. 
In Fig. 2 the dash-dot lines show 6_+(s) for d = 1.5. 

The decrease in 6+ with an increase in d is explained by the fact that with an increase 
in the thickness of the liquid layer (and in the curvature), the conditions of heat transfer 
from the liquid are worsened, facilitating the development of an HTE. 

We use the result of the analysis of [2] in the quasi-steady approximation, when the 
conditions 

A>>i, PrA>>i ( 2 . 1 3 )  

are satisfied. In [2] it is noted that only the increasing branch of the function 6(~,) (see 
Fig. I) can be stable. An analysis of the equation of motion of the phase front in the quasi- 
steady approximation with the initial conditions ~, = I for T = 0 enabled us to determine the 
region of characteristic states of the system in the plane of the parameters 6 and s. The 
equation of the boundary ~0(s) separating the region of flow with an intermediate position 
of the phase front from the region of an HTE with s < so and the region of a complete phase 
transition from the region of an HTE with s > so has the form (see Fig. 2). 

60 --  0,878d2(i -1-- s)2/(l -- d) 2. ( 2 . 1 4 )  

The curve ~_(s) is the boundary separating the regions of a complete phase transition and of 
flow with an intermediate position of the phase front for s < so (see Fig. 2). 

3. Region of Applicability of the Quasi-Steady Approximation 

The numerical solution of the problem (1.9)-(1.15) shows that the quasi-steady approxi- 
mation A = A0 is satisfied for intermediate values of the heat of the phase transition (Fig. 
3), not too large but not too small. This can be explained as follows. For a low heat Q of 
the phase transition [when the condition (2.13) is not satisfied], quasi-steady temperature 
and velocity profiles will be unable to readjust under the rapid motion of the phase front. 
For a high heat Q in the system, even for subcritical ~ (6 < 60), explosive superheating cor- 
responding to the right-hand unstable branch of the function ~(~,) can develop owing to the 
presence of an additional heat source due to the phase transition. The critical conditions 
for the development of nonsteady processes depend on the heat of the phase transition, and 
therefore Eq. (2.14) is satisfied not in some interval of variation of A, but at A = A0. In 
Fig. 3 we present the dependence of A0 on the parameter s characterizing the cooling inten- 
sity. 

81 



ioo 

50 

I 

r ~ I 
. I 

I 
, I .  1 

s o - - . - -  i I 
I I 

I -  

o, 05 0/0 o, ls so 020s~, s 

Fig.  1 F ig .  2 F ig .  3 

A 

500 
A 

o o,?# o, so 

In many cases it may prove necessary to calculate the critical conditions for an arbi- 
trary A. The question of the applicability of Eq. (2.14) in a wide range of values of A is 
interesting in this connection. We calculated the region in which Eq. (2.14) is satisfied 
to Within 10%. The boundaries of this region are the curves A+(s) and A-(s) (see Fig. 3) 
along which the critical values of 6 (60 • 0.160, respectively) are valid. It turned out 
that this region is rather broad, especially for small s [A+(s)/A0(s) = 0.7, A_(s)/A0(s) = 
2.4 for s = 0.2]. With an increase in s, the region bounded by the curves A+(s) and A_(s) 
narrows somewhat, but still remains rather broad [A+(s)/A0(s) = 0.7 and A_(s)/A0(s) = 1.2 
for s = 0.75]. CQnsequently, Eq. (2.14), obtained from the quasi-steady approximation, can 
be used with a small error in a wide range of variation of the parameter A (from A+ to A_; 
see Fig. 3). 

4. Influence of the Initial Temperature on the Development of 

Nonsteady Processes 

The investigation of the problem of a phase transition under the conditions of dissipa- 
tive heat release in the steady-state and quasi-steady statements does not enable us to ex- 
amine the influence of the initial temperature on the development of nonsteady processes. At 
the same time, it was pointed out in [2] that initial heating can greatly alter the critical 
conditions for the development of an HTE and a complete phase transition, obtained from the 
steady-state and quasi-steady theory. It is well known from the theory of a thermal explosion 
[5] that for an initial degree of heating greater than one, the critical value of 6 at which 
a thermal explosion develops is greatly decreased. A critical value of 6, obtained from the 
steady-state theory of a thermal explosion [4], occurs only for a degree of heating Q < I. 
It can be expected that the influence of the initial degree of heating on the development of 
an HTE will be similar. It is also clear that the initial degree of heating can also influence 
the process of a complete phase transition. The hot liquid should solidify more slowly, i.e., 
for smaller 6, and therefore the region in Fig. 2 corresponding to a complete phase transi- 
tion must become narrower. 

In fact, the calculation shows that an increase in the initial temperature leads to a 
decrease in the critical value 60 obtained from the quasi-steady theory (see Fig. 4, where 
s = 0.3 and A = 400). This effect is less well manifested than in the theory of a thermal 
explosion, however. It is seen that 6o does not vary significantly in the interval of initial 
degrees of heating from 0 to 0.5. Even for 8i = I the critical value 6o decreases by only 
20% [60(I) = 140]. The initial degree of heating has a significant influence only for 0 i > 
1.5. 

Thus, the quasi-steady theory is applicable in a wide range of initial temperatures. 

5. Nonsteady Peculiarities of the Development of an HTE and of a 

Complete Phase Transit io ~ 

Let us consider the nonsteady peculiarities of the development of the processes during 
nonisothermal liquid flow under the conditions of a phase transition. 

The calculation shows that two stages can he distinguished in the development of an HTE, 
differing in the direction of motion of the phase boundary (Fig. 5, curve I). In Fig. 5 
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curves I and 3 correspond to s = 0.75, 6 = 319, and A = 115 and curves 2 and 4 correspond to 
s = 0.75, 6 = 319, and A = 10. In the first stage (T < T,) a layer of solid material forms 
on the cold wall (6, decreases). The degree of heating in the liquid subsequently increases 
and in the second stage this layer starts to thaw (6, increases, i.e., 8~,/~ changes sign). 
The thickness of the layer formed in the first stage can reach about half the gap. In both 
stages of development of an HTE the temperature Ol~=l of the adiabatic wall increases mono- 
tonically. 

Two stages can also be distinguished in the process of a complete phase transition: In 
the first stage the temperature of the adiabatic wall rises while in the second stage it falls. 

The change in the sign of ~0/~TI~= z during a complete phase transition and in the sign 
of 8~,/$r in an HTE is a characteristic feature of these processes, making it possible to 
distinguish them in early stages of development. Curves I and 2 show the time dependence of 
the position of the phase front during the development of an HTE and during a complete phase 
transition and curves 3 and 4 show the variation of the temperature of the inner cylinder 
during the development of an HTE and during a complete phase transition. The time of develop- 
ment of the nonsteady processes depends on the intensity of heat release and cooling, as well 
as on the initial conditions. In Fig. 6 we present the dependence of the period of induction 
of an HTE and of the time of a complete phase transition on the parameter 6, characterizing 
the intensity of heat release, for 0 i = 3 and s = 0.05. For small 6 a complete phase transi- 
tion occurs in a short time. The time of a complete phase transition grows with an increase 
in 6 and becomes infinite as 6 § 6,. A hydrodynamic thermal explosion develops with a fur- 
ther increase in 6, with the period of induction of the HTE decreasing. The dependence of the 
times of the nonsteady processes on the initial temperature is similar. 

The regime of an assigned rotational velocity, in which a unique steady state with the 
phase boundary at an intermediate position is always established (cf. [2]), and hence it is 
of little interest from the point of view of nonsteady peculiarities of flow, is mentioned 
only in passing in the present paper. 
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